

©2012 IEEE. Reprinted, with permission, from Abelein, U, Paech, B A Proposal for

Enhancing User-Developer Communication in Large IT Projects, 5th International

Workshop on Cooperative and Human Aspects of Software Engineering (CHASE 2012),

Zurich (Switzerland), June 2nd, 2012, pp. 1-3.

This material is posted here with permission of the IEEE. Such permission of the IEEE does not

in any way imply IEEE endorsement of any of the University of Heidelberg's products or

services. Internal or personal use of this material is permitted. However, permission to

reprint/republish this material for advertising or promotional purposes or for creating new

collective works for resale or redistribution must be obtained from the IEEE by writing to

pubspermissions@ieee.org. By choosing to view this document, you agree to all provisions of the

copyright laws protecting it.

A Proposal for Enhancing User-Developer Communication in Large IT Projects

Ulrike Abelein, Barbara Paech

Institute of Computer Science, University of Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany

{abelein, paech}@informatik.uni-heidelberg.de

Abstract—A review of the literature showed that the

probability of system success, i.e. user acceptance, system

quality and system usage, can be increased by user-developer

communication. So far most research on user participation

focuses either on early or on late development phases.

Especially large IT projects require increased participation,

due to their high complexity. We believe that the step in

software development when user requirements are translated

(and thus interpreted) by developers into a technical

specification (i.e. system requirements, architecture and

models) is a critical one for user participation. In this step a lot

of implicit decisions are taken, some of which should be

communicated to the end users. Therefore, we want to create a

method that enhances communication between users and

developers during that step. We identified trigger points (i.e.

changes on initial user requirements), and the granularity level

on which to communicate with the end users. Also,

representations of changes and adequate means of

communication are discussed.

Keywords—user-developer communication; task-oriented

requirements engineering; rich media theory

I. INTRODUCTION

Large IT projects based on COTS software are becoming
more common than individual developments, as companies
move away from bespoke development and rather purchase
packaged software (SW). Projects introducing those SW
systems are rather complex due to the required customization
for company-specific processes. Also, most companies are
still using traditional project management and SW
development methods like the waterfall model ([1] cited by
[2]). Their advantages are high stability and clear agreements
on price, timeline and scope [3]. However, the drawbacks
are long periods of waiting for the business side due to long
development cycles [3]. Within these cycles requirements
transform, as the translation from user to system
requirements leads to a lot of interpretation and
misunderstanding in combination with a low level of user-
developer communication (UDC). There are two effects of
these long cycles: First, end users do not feel integrated in
the project. Second, end users do not recognize their
requirements in the acceptance phase, due to a high level of
transformation and a long time span between elicitation and
validation [4]. Both effects lead to a low acceptance of the
SW and a low motivation to participate in large IT projects.
A review of literature showed lots of evidence that UDC has
positive effects and can lead to higher user acceptance,

system quality and usage, thus to higher system success [5–
7]. The measures for system success are adopted from [8],
showing that these are mostly used as indicators for system.
success. The topic of user participation (UP) has been widely
researched especially in the area of information systems, but
it is still an open question of how user involvement should be
integrated into system development [9]. Other known
methods found in literature for UP often do not clearly define
how exactly (i.e. in which phases, with which content)
participation should take place [10]. Also, most methods
focus on how to get information for requirements from users,
but not on how and when to communicate changes in
requirements (or in their technical realization) if they are
transformed during development. One can argue that agile
approaches implicitly use that sort of communication, as they
claim very close cooperation [11]. However, they do not
work well in large IT projects, as the end user is not
constantly on site [2]. As there is a positive correlation
between UDC and system success [5–7], as well as a lack of
methods that focus on that, we believe that a new method to
enhance UDC is required when translating user requirements
(‘a statement […] of what services the system is expected to
provide and the constraints under which it must operate’
[12]) into technical specifications. We allocate (according to
the definition in [12]) system requirements, system
architecture and system models into the technical
specification.

In Section II, we describe the motivation, background
and first ideas for our method. We conclude and state our
open questions for further research in Section III.

II. APPROACH TO ENHANCE UDC

In this section we first motivate our approach, and then
we sketch Task-oriented Requirement Engineering (TORE)
[13] on which our method is based. Afterwards, the four
aspects trigger points to start communication, granularity
level for communication, representations of changes and
communication means are described.

A. Motivation for the Approach

Most existing research on UP focuses either on the early
development phases, e.g. elicitation of user needs, or on the
end of the project, e.g. on the user acceptance test [10]. We
believe that in large IT projects using traditional
development methods, there is a need for enhanced UDC
focusing on the translation process from user to system
requirements. An interesting study on the effects of

978-1-4673-1824-2/12/$31.00 c© 2012 IEEE CHASE 2012, Zurich, Switzerland1

communication gaps in large IT projects [14] supports that.
[14] found out that such gaps are caused, beside others, by
complex products, large organization and an unclear decision
structure. They identified different effects of missing
communication: unmet customer expectations, low
motivation to contribute to the requirements work, and
developers controlling what is implemented. Also, the
requirement coverage is unclear due to the lack of
discussions between the design and requirement teams
regarding changes. Especially the last effect supports our
view that the transfer of user requirements into more
technical specification requires attention. At this point a lot
of interpretation is involved. For example a requirement
specifies the results of a system, e.g. the invoice must be
delivered to the customer via email, but not how exactly this
is implemented. Thus, the translator does take a lot of
implicit decisions in this step, some of which should be
communicated to the end users (see suggestion for relevant
changes in Table 1). In our example the decision “Will the
email always be sent as the last step of a workflow based
system or is it possible to send an email after the invoice
generation” is quite relevant for the user. Therefore, we want
to create a method with a special focus on the translation
from user requirements into technical specification.

B. Background: Task Oriented Requirements Engineering

Our approach of explaining the required decisions for the
translation of user requirements into a technical specification
is based on the TORE method [13]. TORE has been
developed by one of the authors and others. By this method,
16 different implicit or explicit decisions on the behavior of
the system are defined (i.e. we do not yet consider non-
functional requirements as they are orthogonal to the
proposed abstraction levels of TORE, but we plan to extend
our method to non-functional requirements in our further
research). The decisions are grouped in four abstraction
levels: Task level – decisions about the roles and tasks to be
supported by the system. Domain level – decisions on the
activities to be supported by the system and the domain data
relevant for these activities. Interaction level – decisions
about the distribution of activities between humans and
computers aligned with decisions on user interface (UI)
structure. System level – decisions about the internals of the
application core and the graphical user interface (GUI). The
first level requires only one decision about user roles and
their task. The domain level comprises four decisions:
determination of the relevant as-is activities, definition of to-
be activities, system responsibilities (here we will use the
more prominent term feature) and decisions on the relevant
domain data. The interaction level comprises also four
decisions: system functions, user-system interaction,
interaction data for input and output of the system and
structure of the UI. Lastly, the system level has two different
decision clusters on the core application (high-level
application architecture, internal system actions, and internal
system data) and on the GUI (navigation and support
functions, dialog interaction, detailed UI-data, and screen
structure). We will use the outlined decisions to structure our
method.

C. Ideas for a Method to Enhance UDC

First, it needs to be identified, which content is important
for the end user: which are reasonable points to start
communication? Those trigger points can be decisions taken
in the translation or changes on agreed user requirements. As
shown in Table 1 the trigger points correspond to a subset of
the TORE decisions and thus can be aligned to the TORE
levels. As we focus not only on SW development but also on
project management, we extend them by the project level
(including decisions regarding cost, schedule and scope of
the project). Also, we introduce the business process level,
which comprises decisions about functionality or features
composed in business processes. The trigger points will vary
with different roles and occasions. Therefore, we suggest to
use a RACI (R–Responsible, A–Approved, C–Consulted, I–
Informed) matrix [15]. Regarding the roles, we will focus on
end users and their management. Developers take
responsibility (R) for all decisions listed in Table 1 (one
exception can be cost allocations which is explained below),
but this is not mentioned explicitly. We also do not list an I
for a role, if this role is consulted (C) or approves (A), as an
approval and consultation requires information in advance.

As summarized in Table 1, changes in cost are relevant
for the management and, depending on the project structure
(e.g. the. budget for system development is directly paid by
the business unit), managers might be responsible directly. In
all cases they need to be consulted and approve the change.
We suggest informing the end user so s/he understands
resulting changes, but as they are not directly involved, there
is no need to consult them or get their approval.

TABLE 1. RACI MATRIX FOR RESPONSIBILITIES

Abstraction level

(based on TORE)
Changes/decisions in…

Mgmt. of

users

End

users

Project level
Cost allocation (R),A,C I

Timing (go-live dates) A C

Business process

level
Business processes A C

Task level Responsibility of the users A C

Domain level

To-be activities I A,C

Features I A,C

Domain data I A,C

Interaction level
Workflow of the system - A,C

User Interface (incl. I/O) - A,C

System level Technology (A), C I

Changes in timeline, business processes or user

responsibility need to be approved by the management. But
most of the issues need input from the end user, Changes on
the domain level require a lot of domain knowledge to
recognize the consequences, thus they need to be approved
by the end user. However, to avoid problems with the
management, they should be informed. We think there is no
need to consult managers, as they will not be interested in
detailed discussions. The same is true on the interaction
level, as changes of UI or in workflows are not relevant for
them. Thus, they should be approved by the end users. As
these should not have other dependencies, there is no need to
inform the management. Changes or decisions regarding
technology should be discussed with the management.
Depending on the governance, they might need approval

2

from the management. Decisions on the system level can
have consequences on other levels, thus we suggest
informing the end users. We assume that GUIs are designed
together with the users and thus do not need additional
communication. For all other changes in technical details, we
assume that they are not relevant for the end users or their
management. The granularity level for the communication
with the user is given through the abstraction levels of
TORE. We assume that most discussions will be on the
domain level (e.g. changes on features) or on the levels
above, such as the task, business process or project levels.
However, if it comes to changes in workflows or UI we have
to step down to the interaction level, e.g. UI structure.
Furthermore, it needs to be figured out how the results of the
decisions (content) as well as the changes in them can be
represented in the discussion with the end user. We suggest
using the existing documentation for content representation
and highlighting occurring changes in them. A list of
possible representation models for each level is listed in [13].
Finally, means of communication need to be specified.
According to the media richness theory (MRT), an activity
that requires communication needs to be matched to the
medium’s ability to convey information [16]. [16]
distinguish between uncertain and equivocal communic-
ation. Equivocal tasks should be managed by rich
communication channels; whereas standard data can be
handled by leaner channels. Based on MRT, face-to-face
communication is the richest channel. Videoconferencing is
a bit leaner, but restricts some visual cues. Phone is not
capable of transmitting visual cues, but instant feedback is
possible. The lowest richness has email and thus is a good fit
for communicating well-understood issues [16]. We think
changes with impact on the project that need to be approved
by the management are equivocal and thus should be
discussed in meetings (if possible face-to-face or through
videoconferences). Informing the end users is less equivocal,
as they do not need to take part in the decision. Thus, it is
sufficient to use a leaner communication, such as email or a
central wiki. Changes to be approved by the end user are
equivocal, thus media rich face-to-face workshops can be a
valid medium. If possible, changes should be clustered for a
half-day workshop. If workshops are not possible, this can
also be mediated through an online meeting place. However,
efficiency drops due to missing visual cues. Captured
rationale of decisions should be available to all project
members including the end users. But in that case,
equivocality is less important, therefore a lean medium like a
wiki should be used.

III. CONCLUSION

In this paper we described the need and first ideas for a
method to enhance UDC in large IT projects. It can be
derived from literature that enhanced UDC has a positive
impact on system success, but we did not find a method that
focuses on the communication of changes in requirements
(or their realization). We identified trigger points based on
the TORE abstraction levels [13]. We assume most
discussions are performed on the domain level. In terms of
representation, we suggest the reuse of existing

documentation. To find the most adequate means of
communication, we look into the MTR, which suggest using
rich data channels in case of high equivocal content.

We have some open questions to answer in our further
research. First, we need to define how the rationale of
decisions can be represented. Second, we need to detail
representations of changes, in order to not only highlight the
change, but also to draw comparisons to previous versions.
Third, we need to further research non-functional
requirements. In addition to the remaining open questions we
will also further specify the method (e.g. which decisions are
to be communicated?) and validate our approach in case
studies to ensure feasibility, if possible in real life IT
projects.

REFERENCES

[1] R. D. Austin and R. L. Nolan, How to manage ERP initiatives.
 Boston: Division of Research, Harvard Business School, 1998.

[2] G. B. Alleman, “Agile project management methods for ERP : how to
 apply agile processes to complex COTS projects and live to tell about
 it,” in Extreme Programming and Agile Methods: XP/Agile Universe,
 D. Wells and L. Williams, Eds. Springer Verlag, 2002, pp. 70-88.

[3] M. Fowler and J. Highsmith, “The agile manifesto,” Software
 Development, vol. 9, no. August, pp. 28–35, 2001.

[4] W. J. Doll and G. Torkzadeh, “A discrepancy model of end-user
 computing involvement,” Management Science, vol. 35, no. 10, pp.
 1151–1171, 1989.

[5] J. D. McKeen, T. Guimaraes, and J. C. Wetherbe, “The Relationship
 between User Participation and User Satisfaction: An Investigation of
 Four Contingency Factors,” MIS Quarterly, vol. 18, no. 4, pp. 427
 - 451, Dec. 1994.

[6] M. J. Gallivan and M. Keil, “The user-developer communication
 process: a critical case study,” Information Systems Journal, vol. 13,
 no. 1, pp. 37-68, Jan. 2003.

[7] T. McGill and J. Klobas, “User developed application success:
 sources and effects of involvement,” Behaviour & Information
 Technology, vol. 27, no. 5, pp. 407-422, Sep. 2008.

[8] M. I. Hwang and R. G. Thorn, “The effect of user engagement on
 system success: A meta-analytical integration of research findings,”
 Information & Management, vol. 35, no. 4, pp. 229-236, Apr. 1999.

[9] S. R. Humayoun, Y. Dubinsky, and T. Catarci, “A three-fold
 integration framework to incorporate user – centered design into agile
 software development,” ser. Lecture Notes in Computer Science, vol.
 6776, pp. 55-64, 2011.

[10] J. Iivari, H. Isomäki, and S. Pekkola, “The user - the great unknown
 of systems development: reasons, forms, challenges, experiences and
 intellectual contributions of user involvement,” Information Systems
 Journal, vol. 20, no. 2, pp. 109-117, Mar. 2010.

[11] M. Korkala, P. Abrahamsson, and P. Kyllonen, “A Case Study on the
 Impact of Customer Communication on Defects in Agile Software
 Development.,” in AGILE 2006 (AGILE’06), 2006, pp. 76-88.

[12] I. Sommerville, Software engineering. Addison-Wesley, 2007.

[13] B. Paech and K. Kohler, “Task-driven requirements in object-oriented
 development,” in Doorn, Jorge. Perspectives on Software
 Requirements., Boston, MA: Kluwer Academic,Print., 2004, pp. 1-25.

[14] E. Bjarnason, K. Wnuk, and B. Regnell, “Requirements are slipping
 through the gaps — A case study on causes & effects of
 communication gaps in large-scale software development,” in 2011
 IEEE 19th International RE Conference, 2011, pp. 37-46.

[15] J. E. Hallows, The project management office toolkit. New York;
 London: AMACOM, 2002, pp. 202 - 205.

[16] R. L. Daft and R. H. Lengel, “Organizational Information
 Requirements, Media Richness and Structural Design,” Management
 Science, vol. 32, no. 5, pp. 554-571, May 1986

3

